Why Old Blood is Bad ...tales from the electronic perfusion record

Molly Marko, BS, BSE, CCP Geisinger Health System Danville, Pennsylvania

Disclosure

I have no financial relationship with any of the companies whose products or materials are discussed here within.

Plan of Attack

- Why blood has the potential to be good
- · Why old blood can be bad
- What does the electronic perfusion record tell us?
- Would washing donor RBC's help?

Allogeneic Red Blood Cells

Why Blood Can Be Good · Oxygen Carrying Capacity $CaO_2 = (1.34 \times Hgb \times SaO_2) + (0.0031 \times PaO_2)$ 100%

 Administration of donor RBC's can increase the CaO₂, thereby increasing oxygenation

Why Blood Can Be Good

· 2,3-Diphosphoglycerate (2,3-DPG)

Lowers affinity of Hemoglobin molecule for oxygen -> oxygen released to tissues

Why Blood Can Be Good

- · Adenosine Triphosphate (ATP)
 - Intracellular energy source
 - Intracellular signaling molecule
 - RBC's release ATP in response to hypoxia, pH, and mechanical stress
 - Increase production of nitric oxide (NO)
 - Vasodilator under hypoxic conditions

Why Blood Can Be Good

- Red Blood Cell shape
 - Round, elastic, bi-concave discs
 - Large surface area for O_2 diffusion
 - Flexibility allows RBC's to pass through capillaries as narrow as 3µm
 - Rouleaux formation

The Storage Lesion

(aka Why Old Blood is Bad)

Why Old Blood is Bad

Loss of 2,3 DPG

Decreases quickly in first
 2 weeks of storage to
 almost undetectable levels

- Increased O_2 affinity
- Levels appear to recover post-transfusion
 - Up to 72 hours
- Studies suggest minimal physiological impact

Why Old Blood is Bad

- Decreased Intracellular ATP
 - 40% reduction @ 35-42 days
 - Associated with the reduced oxygen-delivery capacity
 - Can induce RBC shape changes
 - Levels recover in-vivo

ATP (µmol/g Hb)

<u>Source</u>: Salzer U, et al. Vesicles generated during storage of red cells are rich in the lipid raft marker stomatin. Transfusion 2008; 48: 451-62.

Why Old Blood is Bad

- Morphological changes
 - Biconcave discs
 - Echinocytes with protrusions
 - Spheroechinocytes
 - Formation of microvesicles
 - Loss of membrane phospholipids

Why Old Blood is Bad

- Morphological changes
 - Decreased membrane deformability
 - Increased aggregability
 - Increased adhesion to endothelium
 - Minimizes ability to flow through microcirculation
 - Influences RBC transport of O₂ to tissues
 - Increased osmotic fragility
 - Hemolysis

Hemolysis (%)

Salzer U, et al

Why Old Blood is Bad

- Other Changes
 - 🛧 Potassium
 - **√Sodium**
 - 🕹 pH
 - 🛧 Lactate
 - 🗸 Glucose

\mathbf{K}^{+} (mmol/L)

Na⁺ (mmol/L)

Salzer, et al

Glucose (mmol/L)

Salzer U, et al

The Word on the Street

ORIGINAL ARTICLE

 •2872 patients who received 8802 units of blood ≤ 14 days old

3130 patients who received 10,782 units
 of blood > 14 days old

 Blood older than 2 weeks was associated with a significantly increased risk of postoperative complications as well as reduced short-term and long-term survival

> duration of storage on outcomes. Survival was estimated by the Kaplan-Meier method and Elackstone's decomposition method.

Four groups based on PRBC age:
 <10 days
 10-14 days
 15-19 days
 >19 days

Transfusion of RBCs increased cerebral oxygenation except in those transfused with RBCs stored > 19 days.

Measurements and Main Results: Ptio₂, cerebral perfusion pressure, mean arterial pressure, intracranial pressure, peripheral oxygen saturation, CO₂ pressure at the end of expiration, and intracerebral KEY WORDS: brain hypoxia; cerebral oxygenation; erythrocytes; neurotrauma; brain tissue oxygen pressure; red blood cells; severe brain injury; transfusion Does the storage time of transfused red blood cells influence

- Two groups: blood ≤ 5 days old, blood ≥
 20 days old
- •Measured gastric pH as index of gastric oxygenation status
- No change in oxygenation with any transfusion
- ·Blood transfusion worthwhile?

days was 2 days (first and third quarble, 2, 2.25; range, 2–3); red cells stored \geq 20 days had a mean age of 28 days (first and third quartile, 27, 31; range, 22–32). Hemoglobin concentration in-

KEY WORDS: blood transfusion; critical illness; oxygenation; gastric tonometry; anemia; storage lesion

ORIGINAL ARTICLE

Association between duration of storage of transfused red blood cells and morbidity and mortality in adult patients: myth or reality?

Christophe Lelubre, Michael Piagnerelli, and Jean-Louis Vincent

BACKGROUND: The duration of red blood cell (RBC) storage before transfusion may alter RBC function and, therefore, influence the incidence of complications, STUDY DESIGN AND METHODS: With a computerized literature search from 1983 to 2008, 27 studies reporting the relationship between age of transfused RBCs and physiologic variables or incidence of complications in adult patients were identified. RESULTS: Three studies (one abstract only, two foreign language) were excluded. The 24 remaining studies were grouped according to the patient population: cardiac surgery (eight studies), colorectal surgery (three), intensive care unit (ICU; seven), and trauma (six). The studies were too heterogeneous to allow a formal meta-analysis. Twenty-one of the 24 studies were single-center, and 12 were retrospective. The number of patients was highly variable, ranging from 15 to 6002. In cardiac surgery, two studies reported an increased risk of mortality but had statistical limitations. In colorectal surgery, two studies that addressed the effect on postoperative infections in the same database but with different designs yielded conflicting results. In general ICU patients, two retrospective studies reported a significant correlation between length of RBC storage and microcirculatory alterations or mortality, but the results were not confirmed in subsequent prospective, double-blinded studies. In trauma, five studies reported a correlation between RBC age and development of infection, multiple organ dysfunction, or mortality.

CONCLUSIONS: From the currently available published data, it is difficult to determine whether there is a relationship between the age of transfused RBCs and outcome in adult patients, except possibly in trauma patients receiving massive transfusion. ed blood cell (RBC) transfusion can be associated with adverse events, including the transmission of infective agents (e.g., human immunodeficiency virus, hepatitis B and C viruses, and bacteria), acute and delayed hemolytic transfusion reactions, transfusion-related acute lung injury, transfusion-associated graft-versus-host disease, and so-called transfusion-related immunomodulation. Numerous studies have indicated that RBC transfusions may be associated with an increased risk of morbidity (postoperative infection,¹⁻³ longer duration of hospital or intensive care unit [ICU] stay,⁴⁵ duration of mechanical ventilation,⁴ multiple organ failure [MOF]⁶) and/or mortality.⁵⁷

RBC storage lesion, defined as biochemical and biomechanical changes in the RBC and the storage media during ex vivo preservation,^{8,9} may exacerbate this transfusion-associated morbidity and mortality.¹⁰ Biochemical changes occurring during storage include an enhanced susceptibility to oxidative damage,^{11,12} and a decrease in adenosine triphosphate (ATP), 2,3diphosphoglycerate,¹³ and membrane sialic acid.¹⁴ Changes to the storage medium also occur, with a progressive decrease in pH, an increase in plasma potassium, release offree hemoglobin (Hb) from lysed RBCs¹⁵ (binding

ABBREVIATIONS: CABG – coronary artery bypass grafting; ICU – intensive care unit; IQR – interquartile range; LOS – length of stay; MOF – multiple organ failure; pHI – gastric mucosal pH; PHO₂ – cerebral tissue oxygenation; SAGM – saline-adenine-glucose-mannitol.

From the Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium.

Address reprint requests to: Dr Jean-Louis Vinceni, Department of Intensive Care Medicine, Erasme University Hospital, Route de Lennik 808, 1070 Brussels, Belgium; e-mail: flvincen@ ulb.ac.be.

Received for publication November 6, 2008; revision received February 16, 2009; and accepted March 6, 2009. doi: 10.1111/j.1537-2995.2009.02211.x TRANSFUSION ";":".". "From the currently available published data, it is difficult to determine whether there is a relationship between the age of transfused RBC's and outcome in adult patients, except possibly in trauma patients receiving massive transfusion."

Tales from the Electronic Perfusion Record

Enter Events

10.00.00

. . .

00

•

00

2.6

37.0 ml

4.0 ml

ml

ml

✓ actualize

HCT

Blood gas

-

Exit

00 4

70

74

00 0

20.0

Graphs Timer Gain/Loss Table Gas flow CPlegia Totals Actual Time Case no. Patient Time Name Quantity/ Unit E -5 12:31:49 12:31:39 ACT 559.0 sec Туре 12:11:54 Heparin 1000units/ml 24000.0 units 00:00:00 Bypass O Drug Comment Output ○ Volume 10:14:10 Cardiac Index 00:00:00 X-Clamp F-keys 10:05:55 RBC/PRP(ml) ACT Isoflurane 0:05:50 PRP(ml) F1 F7 D:05:45 PPP(ml) SIII INPUT Cooling Rewarm F2 F8 0:05:39 Whole B **CDI 500** Vacuum on Vacuum off F3 F9 Car. Flow: 4.872 Labs Sent/CDI Stored F4 • Flow/PressureDownF F5 **ANESTHESIA** MONITOR **Poor Venous Return** ٠ F6 Actual Time < INVOS Additional Selection Store Enter blood gas time (hh:mm) free Input / Comment : actualize Time Arterial BP Art Line/mmHg Blood Qb VAVD Sweep FiO2 NASO Art Temp Ven Tem rSO2 L rSO2 R 12:31:40 36.2 22.3 22.2 80 83 -.0874 144 -1 12:31:20 82 36.2 22.3 22.2 76 73 0 144 -.08 12:31:00 75 83 144 0 36.2 22.3 22.2 74 -.07 12:30:40 22.3 22.2 76 73 84 144 -.08-1 36.2 preoperative data 12:30:20 22.2 77 86 142 -.08 0 36.2 22.3 74 12:30:00 22.3 22.3 79 86 144 -.08 0 36.2 73 12:29:40 85 143 -.080 36.2 22.3 22.3 78 73 12:29:20 85 0 36.2 22.3 22.3 79 74 144 -.08

Utilization of the EPR

- Use of the third timer on the Sorin S3 pump allows us to track transfusion time
- Three time points:
 - Pre-transfusion
 - Transfusion
 - Post-transfusion
- Data collected every 20 seconds

Utilization of the EPR

 At the end of each case, data is wirelessly exported to a desktop computer

 That data can then be exported from the DMS program as an Excel file for evaluation

X N	Microsoft Excel - EXCEL_DATA.XLSEXCEL_DATA.XLSEXCEL_DATA																
:1	<u>E</u> ile <u>E</u> dit	⊻iew	Insert	F <u>o</u> rmat	<u>T</u> ools	<u>D</u> ata	<u>W</u> indow	Help								Туре а	question fo
			<u>a</u> 16		👌 🗕 🔊	- 🧕	Σ - 2	l 🛍 🤇		Arial		10 -	в	<u>υ</u>	E 3	\$ %	
	A736	-	fx	1472			_									 	
	A	В		С	BA			D A								BJ	BK
736	1472	14:23:	:00	3.6					n		1.1.				6		
737	1472	14:23:	:20	3.69	Msc		M	SCE	llane	2045	time	r s	Tar	tec			
738	1472	14:23:	:40	3.6 B						5535	1 11115						
739	1472	14:24:	:00	3.69				104									
740	1472	14:24:	:20	3.69				103									
741	1472	14.24	40	3.69				103									
742	1472	14:25:	:00	3.7				103									
743	1472	14:25:	:21	3.72				104									
744	1472	14:25:	:40	3.72				104									
745	1472	14:26:	:00	3.7				103									
746	14/2	14:26:	:20	3.66				104									
747	1472	14:26:	:40	3.66				104							_		
748	1472	14:27:	20	3.67				103									
749	1472	14:27:	:20	3.69				103									
750	1472	14:27:	40	3.69		_		103									
751	1472	14:20	.00	3.71				104							_		
752 750	1472	14.20	.20	2.73				103									
700 754	1472	14.20	.40	3.74				103									
754	1472	14.20	.00	3.75		_		104									
756	1472	14.25	-40	3.75		_		103							_		
757	1472	14:20	.40	3.75				104									
758	1472	14:30	20	3.76				103									
759	1472	14:30	40	3.75				104									
760	1472	14:31:	:00	3.77				103									
761	1472	14:31:	:20	3.79				103							_		
762	1472	14:31:	:40	3.82				103									
763	1472	14:32:	:00	3.86				103									
764	1472	14:32:	:20	3.86				104									
765	1472	14:32:	:40	3.84				103									
766	1472	14:33:	:00	3.81				103									
767	1472	14:33:	:20	3.79													
768	1472	14:33:	40	3.				ere	lang	PUIC	time	n c	tor	nhe			
769	1472	14:34:	:00	3.19	Msc		111	BCG	nane	Soup.	11116	<u>ar ə</u>		ahe.	4		
770 I 4 4	1472	14·34 CEL DA	201 TA XI	REXCE	1.41.4	L KLSEXC	:7					1					
		DEL_DA	II M.AL	OLAULL	_0414.	LOLAL	9							J	_		

Readv

: B)	<u>F</u> ile	<u>E</u> dit	<u>⊻</u> iew	Insert	F <u>o</u> rmat	<u>T</u> ools	<u>D</u> ata	<u>W</u> indow	<u>H</u> elp
--------------	--------------	--------------	--------------	--------	-----------------	---------------	--------------	----------------	--------------

: 🗅 🗃 🔒 📑 🛕 🚉 📭 🏝 • 🖉 • | 😓 Σ • 💱 🛄 🔘 🚆 🛛 Arial

Type a question for help 🛛 🚽 🗖 🗙

• 10 • | B I U | 三 三 三 國 | \$ % | 彈 | 🖽 • 🖄 • 🚣 • 🚆

	A2	•	7× 650													
	A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	
1	PROTNR	ZEIT	ARTFLOW	FLOW2	FLOW3	DRUCK_1	DRUCK_2	DRUCK_3	DRUCK_4	MICROBU	TEMP_1	TEMP_2	TEMP_3	TEMP_4	HYPOSET	HY
2	650	16:13:40	4.14			184	0			0	32.1	32		32.1	65	
3	650	16:14:00	4.19			182	0			0	32.2	32		32.2	65	
4	650	16:14:20	4.2			184	0			0	32.3	32		32.2	64	
5	650	16:14:40	4.12			185	0			0	32.3	32.1		32.1	64	
6	650	16:15:00	3.69			196	0			0	32.3	32		32.2	65	
7	650	16:15:20	3.53			204					22.2	24.0		22.4	- Cî	
8	650	16:15:40	3.52								6		- 0			
9	650	16:16:00	3.58		ata	coh	N Al	nd r	onst	ed 1	fror	n m	nste	21		
10	650	16:16:20	4.03		ana						11.04	44 444				
11	650	16:16:40	4.07			ו:1 ו					••••					
12	650	16:17:00	4.1	2	XCe		2 11	TO 5	12010		e w	01483	sne	2TS		
13	650	16:17:20	4.14			1 1 44	S 111		- P-		~ ~ ~	31.14	3113	313		
14	650	16:17:40	4.19	h	100		th	100	tim	o b	lint					
15	660	16:18:00	4.22		ISEL	1 01		ree		e pu	21115	2.				
16	660	16:18:20	4.22							· · · ·		-				
17	660	16:18:40	4.21													
18	650	16:19:00	4.24													
19	650	16:19:20	4.21						6	•						
20	650	16:19:40	4.2			• Pn	0-ti	rans		lion						
21	650	16:20:00	4.24			4.4	0-11			1011						
22	000	10.20.20	4.20			. N.				£		(2)				
23	000	16.20.40	4.20			•DI		91 T f	ans	TUS	101					
24	000 660	16:21:00	4.20						51115	1 23						_
25	650	16:21:20	4.20			·Po	a+ -	than	ofu	diar	n (2)					
27	650	16:22:00	4.20				21-1	Trui	B							
28	650	16:22:20	4.29													_
29	650	16:22:40	4.29													_
30	650	16:23:00	4.28			207	0			0	32.3	32.1		32.3	66	
31	650	16:23:20	4.27			207	0			0	32.3	32.1		32.3	66	
32	650	16:23:40	28			207	0			Ō	32.3	32.1		32.3	66	
33	650	16:24:00				209	0			0	32.2	32.1		32.3	66	
34	650	16:24:20				209	0			0	32.1	32.1		32.3	66	
35	,650	16:24:40	1 9	l,		, 211				, 0	32.1	32.1		32.3	66	~
	→ N \ Or	nline Import	: <u>\</u> 1/2/3	/Pre-Tx /	DURING TX	(/ POST TX	: 🖉 Calculati	ons PRE 🏑	Calculation	< III						>

Ready

:1	<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>I</u> ns	sert F <u>o</u> rmat	<u>T</u> ools <u>E</u>	<u>)</u> ata <u>W</u> indo	w <u>H</u> elp							Туре а	question for	help 🚽 🗕	ð ×
	💕 🔒 I	2 🛋 🖪	🛍 🗈 🕻	<u>-</u> -	🧕 Σ ᠇	- 2↓ 🌆 🤇		Arial	v 1	10 - B	ΙUΙ≣		\$ %		👌 - <u>A</u>	- 12
	A2	-	<i>f</i> ≈ 650													
	A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	
1	PROTNR	ZEIT	ARTFLOW	FLOW2	FLOW3	DRUCK_1	DRUCK_2	DRUCK_3	DRUCK_4	MICROBU	TEMP_1	TEMP_2	TEMP_3	TEMP_4	HYPOSET	ΗY
2	650	16:13:40				104				0	32.1	J2		32.1	65	=
3	650) 16:14:00	4.19			182	0			0	32.2	32		32.2	65	
4	650) 16:14:20	4.2			184	0			0	32.3	32		32.2	64	_
5	650) 16:14:40	4.12			185	0			0	32.3	32.1		32.1	64	
6	650) 16:15:00	3.69			196	0			0	32.3	32		32.2	65	
7	650) 16:15:20	3.53			201	0			0	32.2	31.9		32.1	66	
8	650) <u>16:15:40</u>	3.52			201	0			0	32.3	32		32.2	65	
9	650) 16:													64	_
10	650) 16:													63	_
11	650) 16:			I										64	
12	650) 16:	- ` W	e n	OW I	nave	2 1/1	1011	nati	ION .	5CD(arat	ea	DY	64	_
13	650) 16:		• • • •							L .			~/	64	_
14	650) 16:	tim	e h	aint	t (br	NO	hos	₩ ₩	anne	afina	vion'			64	_
15	650) 16:	1111	ק בו		וא) ו	S-,	905) I – I I	1 611 12	91 A6	nou)		64	_
16	650	16:		•				•							65	_
17	651	J 16:			•	•									65	_
18	651	J 16:	• B1	IFF W	hati	, upu	outr-	すわる	o clif	ter	ent				65	_
19	650	1 161		11 11	11211			1116		101	2111				65	_
20	550	1 161		ich											66	
21	650	16	Var	'IQD	162:										66	_
22	000	10.													00	
23	000	10.													00	
24	100) 10.) 16:21:20	1.26			208				0	30.3	32.11		30.0	00 33	-
25	100	16:21:20	4.20 4.28			200	0 0				32.3	32.1		32.2	00 AA	
20	650) 16:21:40) 16:22:00	4.20			207	0			0	32.3	32.1		32.0	66	
28		16:22:00	4.20			200	0 0			0	32.3	32.1		32.2	88 88	-
29	650) 16:22:20	4.20			200	0			0	32.3	32.1		32.3	66	-
30	650	16:22:40	4.20			207	0 0			0	32.3	32.1		32.3	66	-
31	000 128) 16:23:00	4.20 1 27			207	0 0			0	32.3	32.1		32.3	88 88	-
32	650	16:23:20	4.21			207	n			0	32.3	32.1		32.3	88 88	-
33	650	16:20:40	4.20			207	о П			0	32.0	32.1		32.3	66	-
34	650	16:24:00	4.20			200	0 0			0	32.2	32.1		32.3	66	-
35	650	16:24:20	4.20 4.19			200	0			. n	32.1	32.1		32.3	66	~
14 4	► N\ C	Inline Impor	t \1 /2/3	/Pre-Tx /	DURING T)	(/POST TX	/ Calculati	ons PRE 🏑	Calculations	<						>

X N	Microsoft Excel - Linear Data															
2	<u>File E</u> dit	t <u>V</u> iew <u>I</u> ns	ert F <u>o</u> rmat	<u>T</u> ools <u>D</u>	ata <u>W</u> indo	w <u>H</u> elp							Type a	question for	help 🚽 🗕	₽×
D	pi 🗐 🖌	A 🔒 A	1 63. En 🗗	<u>-</u> -	🔍 Σ -		. 🗋 🗄	Arial	•	10 - B	<i>I</i> U ≣		\$ %	₹∎ 000 -	- 🗞 - A	+ <u>"</u>
	A1		f _x		1.69	241000				V						
	A	В	C I	D	E	F	G	Н		J	K	L	М	N	0	
1			Pt													Ē.
2			Age	24	17	35	35	37	27	28	17	16	17	17	36	
3			Addititve	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	(
4			Washed	Y	Y	Y	Y	Υ	Y	Y	Y	Y	Y	Y	Υ	
5	AVE	STDEV	Lime	V02	V02	V02	V02	V02	V02	V02	V02	V02	V02	V02	V02	
6	110.20	51.77	0:00	126.4	41.8	101.2	98	136	62.6		92.5	91.3	39.2	134.8	159.4	
7	125.57	59.57	0:20	141.2	112.2	100.9	102.1	137.1	62.7	52.2	191.8	187.8	35.8	133.9	176.3	1
8	119.07	54.84	0:40	161.3	117.6	100.7	100.9	145.4	66.7	81.8	103.1	191.6	36.1	143.8	181.5	
9	116.68	61.16	1:00	161.7	117.9	101.6	97.8	130	70.9	85	67.9	209.7	32.8	141.2	175.3	·
10	114.73	57.84	1:20	161.6	106.2	101.4	107.5	120.2	133.7	80.9	65.4	173.1	32.4	141.6	164.3	·
11	112.40	51.47	1:40	160.6	99.9	101.4	111.2	115.3	120.7	91.2	68.7	172.3	34.1	144.5	150.6	
12	108.80	53.86	2:00	152.1	92.4	101.4	96.6	99.6	99.4	91.9	67.6	186	27.1	143.8	139.1	
13	110.11	49.92	2:20	152	83.5	101.4	98.9	111.4	93.7	89	69.3	199.1	22.6	140.3	146.1	
14	108.54	48.91	2:40	156.6	79.4	103.4	92.7	123.6	91.3	77.5	72.7	203.9	19.3	137.3	153.6	<u> </u>
15	107.97	49.53	3:00	157.3	72.1	106.6	101.1	157.8	116.4	73.8	/8./	197.1	24.8	147.5	168.5	
16	107.72	51.07	3:20	161.5	73.4	103.3	106.4	144.6	128.3	72.8	86.4	183.1	25.1	139.3	165.4	
17	111.50	56.10	3:40	156.3	/5.b	104.9	111.8	135.6	91	65.6 C5.C	90.1	202.9	29.9	139.3	161.1	
10	110.02															+
19 20	112.31		hat	1 00	bha	nat	od	int		ank	cha	bot	a 4	nn -	0.9	<u>+-</u>
20	112.67		JUIC	1 26	spu	rur	EU		UW	ULK	2116		\mathbf{D}	J	0.1	<u>+-</u> .
27	112.07		0		J										3.7	<u>+-</u> .
23	106.60			640	not	at v	ani	abl	00						3.4	
24	106.78				121	JJV	U I U	UDI	23						6.4	<u></u>
25	107.38														0.1	<u></u>
26	107.03														6.6	<u> </u>
27	107.28			1	•			1	•			، م	,		9.3	<u></u>
28	104.77	て • ビ	ro-		Inn	\mathbf{n}	anc	l ho	St-	tra	nct	-1141	on		2.7	-
29	98.81			,	-11 11	·9, ·	und		51			491			75	
30	100.61			-				_							0.1	
31	105.09	44.22	8:20	153.1	108.7	100.6		136.2	94.2	49.4	27.7	218.7	25	133.1	165.2	
32	105.33	43.67	8,0	154.7	104.8	105.8		135.4	98.4	46.4	36.3	210.6	24.9	130.9	172.8	
33	104.74	40.87	3:00	148.6	94.2	105,7		134.2	93.5	48.5	45	210.9	24.7	132.3	191.7	<u> </u>
34	102.81	41.74	9:20	150.1	99	12.2		134.6	78.3	35.2		212.3	25.8	136.4		-
35	104 56	1 39.57 L	Hh (3) \ ₩ □	$\frac{171.6}{1702.02}$	1 95.7 2) / VO2 (2		- 12 (2) / DC	1 1/0 1 12 (3) / 024	87.2 FR / 02FP	(2) / O2EP	(3) /	210.5	26.4	137-1		
Dood	0 NI		1.0 (0) A r u	~ A *02 (2	-7 X VOE (J					VEN VEEN					ULIM	
Read	7														1011	

Variables

- Cardiac Index
- MAP
- Temperature
- Sweep Rate
- FiO₂
- Hemoglobin
- Invos (Right)
- Invos (Left)
- · SVR

- pH • SvO₂
- · SaO2
- · PaCO₂
- PaO2
- HCO3
- Oxygen Consumption
- Oxygen Delivery
- Oxygen Extraction Ratio

Variables

- Cardiac Index
- MAP
- Temperature
- Sweep Rate
- FiO₂
- Hemoglobin
- Invos (Right)
- Invos (Left)
- · SVR

- t) · Oxygen Consumption · Oxygen Delivery
 - Oxygen Delivery
 Oxygen Extraction Ratio

• SvO₂ • SaO₂

pH

- · Paco₂
- PaO₂
- HCO3

Oxygen Extraction Ratio (O_2 ER)

- Index of global oxygenation
- Measure of the fractional tissue uptake of oxygen from the blood at the microcirculation level
- O_2 ER = VO_2/DO_2
- Normal value ≤ 30%

Data Analysis

- Transfusion data separated into 3 groups based on blood age
 - Group 1: 0 15 days old
 - Group 2: 16 28 days old
 - Group 3: 29 42 days old
- Multiple, concurrent transfusions of same age counted as same event
- Multiple, concurrent transfusions of different ages counted as same event but categorized by oldest unit

Oxygen Delivery (DO_2)

 $DO_2 = Q \times [(1.34 \times Hgb \times SaO_2)]$

Oxygen Delivery (DO_2)

 $DO_2 = Q \times [(1.34 \times Hgb \times SaO_2)]$

Cardiac Index

 $DO_2 = \mathbf{Q} \times [(1.34 \times \text{Hgb} \times \text{Sa}O_2)]$

Cardiac Index

 $DO_2 = Q \times [(1.34 \times Hgb \times SaO_2)]$

Hemoglobin

 $DO_2 = Q \times [(1.34 \times Hgb \times SaO_2)]$

Oxygen Consumption (VO_2)

Venous Oxygen Saturation (SvO_2)

Mean Arterial Pressure

Points of Interest

 Noticeable and consistent differences between the three groups of blood

 Oxygen extraction least in oldest blood
 Venous saturation greatest is oldest blood
 Strongly suggests decreased ability of old blood to release oxygen to microcirculation

Limitations

- Observational study
- Cannot isolate storage lesion variables to determine cause and effect
- Limited power of certain variables due to small sample size

Somanetics

Future Direction

- Continue to collect and analyze data
- Data analysis to show statistical significance
- Compute changes in oxygenation variables
- Correlate data to outcomes
- Compare washed RBC's to unwashed RBC's
- Create a multi-institutional data set among other DMS users

To Wash or Not To Wash

A comparative study of reducing the extracellular potassium concentration in red blood cells by washing and by reduction of additive solution 248 TRANSFUSION Volume 47, February 2007

Ila Bansal, Beverly W. Calhoun, Cherilyn Joseph, Mohammad Pothiawala, and Beverly W. Baron

pRBCs 3-21 days old

"Washing pRBCs results in very low levels of K+."

0.0005). Washing, however, was significantly better than AS reduction in reducing K* in stored pRBCs (p < 0.05).

CONCLUSIONS: Washing pRBCs results in very low levels of K*. AS reduction also significantly reduces K* levels. Selection of the method of K* reduction will depend on the stringency of K* reduction needed, the time constraints, and the availability of facilities and staff for washing. cedure, AS reduction, results in reduction of K* in pRBCs comparable to that achieved by washing, we compared the K* levels in blood units subjected to both methods.

ABBREVIATION: pRBCs- packed red blood cell units.

From the Department of Pathology (Blood Bank), The University of Chicago, Chicago, Illinois.

Address reprint requests to: Beverly Baron, MD, Blood Bank, MC0007, Room TW003, The University of Chicago Hospitals,

ORIGINAL PAPER

© 2006 Blackwell Publishing DOI: 10.1111/j.1423-0410.2006.00852.x

Washing of stored red blood cells by an autotransfusion device before transfusion

•Free lactate and potassium siginificantly reduced RBC osmotic resistance improved RBC aggregation capacity reduced •Deformability and Free Hgb unchanged

Received: 13 April 2006, revised 30 August 2006, accepted 8 September 2006, published online 12 December 2006 CONCLUSION Washing stored blood before transfusion may be of benefit, because the waste products are effectively removed from the stored RBC.

Key words: aggregation, autotransfusion device, deformability, RBCs, transfusion, washing.

ASAIO Journal 2007

The Effect of Preprocessing Stored Red Blood Cells on Neonates Undergoing Corrective Cardiac Surgery

Mean age of RBC's ~ 15 days

Table 3. The Differences of Blood Variables in Unprocessed PRBCs in C Group and Processed PRBCs in P Group

	Hematocrit (%)	Lactate (mmol/L)	Blood Glucose (mmol/L)	Potassium (mmol/L)	Base Excess (mmol/L)
C group	42.4 ± 3.5	10.5 ± 2.1	17.2 ± 2.1	15.2 ± 3.5	-28.4 ± 4.2
P group	65.7 ± 8.1*	3.2 ± 0.8*	9.3 ± 1.7*	7.3 ± 2.8*	-27.8 ± 3.9

Comparing with C group. p < 0.01.

blood glucose, $[K^+]$, and lactate blood glucose, $[K^+]$, and lactate CPB (p < 0.01), and lower than that of C group at the end of Before surgery, parents of every patient part

CPB (p < 0.01), and lower than that of C group at the end of CPB (p < 0.05). The total priming of PRBCs in P group was significantly less than that in C group (p < 0.01). Perioperative processing with CATS provided a high-quality RBC concentration, decreased the total priming of PRBCs, providing increased high-quality blood salvage during neonatal CPB procedure. ASAIO Journal 2007; 53:680–683. Before surgery, parents of every patient participating in this investigation gave informed written consent. From May 2005 to December 2006, 16 neonates with congenital heart disease undergoing cardiac surgery with CPB were randomly assigned to two groups: P group (n = 8) received the processed PRBC before priming with CATS (Fresenius, Bad Homburg, Germany): C group (n = 8) received unprocessed PRBC for prim-

To Wash or Not To Wash?

- Research has demonstrated:
 - Decreased potassium load
 - Decreased lactate load
 - Increased hematocrit
- Within the Geisinger Health System all donor RBC's are washed prior to transfusion in cases utilizing ATX
 Exception: emergent need for RBC's
 Negatives to this practice?

Take Home Messages

- After 15 days of storage:
 - 2,3 DPG, ATP, and RBC survivability decreases
- Clinical significance is inconclusive based on current studies
- The Electronic Perfusion Record may assist in elucidating these differences
- The age of donor RBC's has an effect on oxygenation variables