Pyruvate enhancement of cardiac performance: Cellular mechanisms and clinical application.

Pyruvate enhancement of cardiac performance: Cellular mechanisms and clinical application.

Click the title to purchase the article.

Abstract:

"Cardiac contractile function is adenosine-5'-triphosphate (ATP)-intensive, and the myocardium’s high demand for oxygen and energy substrates leaves it acutely vulnerable to interruptions in its blood supply. The myriad cardioprotective properties of the natural intermediary metabolite pyruvate make it a potentially powerful intervention against the complex injury cascade ignited by myocardial ischemia–reperfusion. A readily oxidized metabolic substrate, pyruvate augments myocardial free energy of ATP hydrolysis to a greater extent than the physiological fuels glucose, lactate and fatty acids, particularly when it is provided at supra-physiological plasma concentrations. Pyruvate also exerts antioxidant effects by detoxifying reactive oxygen and nitrogen intermediates, and by increasing nicotinamide adenine dinucleotide phosphate reduced form (NADPH) production to maintain glutathione redox state. These enhancements of free energy and antioxidant defenses combine to augment sarcoplasmic reticular Ca2+ release and re-uptake central to cardiac mechanical performance and to restore β-adrenergic signaling of ischemically stunned myocardium. By minimizing Ca2+ mismanagement and oxidative stress, pyruvate suppresses inflammation in post-ischemic myocardium. Thus, pyruvate administration stabilized cardiac performance, augmented free energy of ATP hydrolysis and glutathione redox systems, and/or quelled inflammation in a porcine model of cardiopulmonary bypass, a canine model of cardiac arrest–resuscitation, and a caprine model of hypovolemia and hindlimb ischemia–reperfusion. Pyruvate’s myriad benefits in preclinical models provide the mechanistic framework for its clinical application as metabolic support for myocardium at risk. Phase one trials have demonstrated pyruvate’s safety and efficacy for intravenous resuscitation for septic shock, intracoronary infusion for heart failure and as a component of cardioplegia for cardiopulmonary bypass. The favorable outcomes of these trials, which argue for expanded, phase three investigations of pyruvate therapy, mirror findings in isolated, perfused hearts, underscoring the pivotal role of preclinical research in identifying clinical interventions for cardiovascular diseases."1


1. Pyruvate enhancement of cardiac performance: Cellular mechanisms and clinical application.
Mallet RT, Olivencia-Yurvati AH, Bünger R.
Exp Biol Med (Maywood). 2017 Jan 1. [Epub ahead of print]

 

Recent Stories
Delirium After Cardiac Surgery and Cumulative Fluid Balance: A Case-Control Cohort Study.

Hemolytic characteristics of three suctioning systems for use with a newly developed cardiopulmonary bypass system.

Direct Femoral Cannulation in Minimal Invasive Pediatric Cardiac Surgery: Our Experience With Midterm Result.

AmSECT Membership Eligibility

An Active Member shall be any perfusionist active in the practice of extracorporeal circulation technology. There are also opportunities to become a Transitional Active Member for those less than a year removed from graduation from an approved accredited training program. Other options include; an Associate Membership, International Membership, Perioperative Blood Management Clinician Membership, and Student Membership.

Click Here to Learn More

Looking for Employment Opportunities?

AmSECT members may post an available position for a perfusion specialty at your institution or firm.

Non-members may also post positions free of charge, to be reviewed by National Headquarters prior to posting.

Members - Click to Post a Position
Non-Members - Click to Post a Position

Contact AmSECT


AmSECT National Headquarters
330 N Wabash Ave, Suite 2000
Chicago, IL 60611

  Phone: (312) 321-5156
  Fax: (312) 673-6656
  Email: amsect@amsect.org

AmSECT © 2018 | View Privacy Policy | Site Map